CHAPTER 45 Population and Community Ecology Figure 45.1 Asian carp jump out of the water in response to electrofishing. The Asian carp in the photograph on the right were harvested from the Little Calumet River in Illinois in May, 2010, using rotenone, a toxin often used as an insecticide, in an effort to learn more about the population of the species. (credit left image: modification of work by USGS; credit right image: modification of work by Lt. David French, USCG) **INTRODUCTION** Imagine sailing down a river in a small motorboat on a weekend afternoon; the water is smooth and you are enjoying the warm sunshine and cool breeze when suddenly you are hit in the head by a 20-pound silver carp. This is now a risk on many rivers and canal systems in Illinois and Missouri because of the presence of Asian carp. This fish—actually a group of species including the silver, black, grass, and big head carp—has been farmed and eaten in China for over 1000 years. It is one of the most important aquaculture food resources worldwide. In the United States, however, Asian carp is considered a dangerous invasive species that disrupts community structure and composition to the point of threatening native species. ### **Chapter Outline** - 45.1 Population Demography - 45.2 Life Histories and Natural Selection - 45.3 Environmental Limits to Population Growth - 45.4 Population Dynamics and Regulation - 45.5 Human Population Growth - 45.6 Community Ecology - 45.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior # 45.1 Population Demography By the end of this section, you will be able to do the following: - Describe how ecologists measure population size and density - Describe three different patterns of population distribution - Use life tables to calculate mortality rates - Describe the three types of survivorship curves and relate them to specific populations Populations are dynamic entities. Populations consist all of the species living within a specific area, and populations fluctuate based on a number of factors: seasonal and yearly changes in the environment, natural disasters such as forest fires and volcanic eruptions, and competition for resources between and within species. The statistical study of population dynamics, **demography**, uses a series of mathematical tools to investigate how populations respond to changes in their biotic and abiotic environments. Many of these tools were originally designed to study human populations. For example, **life tables**, which detail the life expectancy of individuals within a population, were initially developed by life insurance companies to set insurance rates. In fact, while the term "demographics" is commonly used when discussing humans, all living populations can be studied using this approach. # **Population Size and Density** The study of any population usually begins by determining how many individuals of a particular species exist, and how closely associated they are with each other. Within a particular habitat, a population can be characterized by its **population size** (**N**), the total number of individuals, and its **population density**, the number of individuals within a specific area or volume. Population size and density are the two main characteristics used to describe and understand populations. For example, populations with more individuals may be more stable than smaller populations based on their genetic variability, and thus their potential to adapt to the environment. Alternatively, a member of a population with low population density (more spread out in the habitat), might have more difficulty finding a mate to reproduce compared to a population of higher density. As is shown in Figure 45.2, smaller organisms tend to be more densely distributed than larger organisms. # **WISUAL CONNECTION** Figure 45.2 Australian mammals show a typical inverse relationship between population density and body size. As this graph shows, population density typically decreases with increasing body size. Why do you think this ### **Population Research Methods** The most accurate way to determine population size is to simply count all of the individuals within the habitat. However, this method is often not logistically or economically feasible, especially when studying large habitats. Thus, scientists usually study populations by sampling a representative portion of each habitat and using this data to make inferences about the habitat as a whole. A variety of methods can be used to sample populations to determine their size and density. For immobile organisms such as plants, or for very small and slow-moving organisms, a **quadrat** may be used (Figure 45.3). A quadrat is a way of marking off square areas within a habitat, either by staking out an area with sticks and string, or by the use of a wood, plastic, or metal square placed on the ground. After setting the quadrats, researchers then count the number of individuals that lie within their boundaries. Multiple quadrat samples are performed throughout the habitat at several random locations to estimate the population size and density within the entire habitat. The number and size of quadrat samples depends on the type of organisms under study and other factors, including the density of the organism. For example, if sampling daffodils, a 1 m² quadrat might be used. With giant redwoods, on the other hand, a larger quadrat of 100 m² might be employed. This ensures that enough individuals of the species are counted to get an accurate sample that correlates with the habitat, including areas not sampled. Figure 45.3 A scientist uses a quadrat to measure population size and density. (credit: NPS Sonoran Desert Network) For mobile organisms, such as mammals, birds, or fish, scientists use a technique called **mark and recapture**. This method involves marking a sample of captured animals in some way (such as tags, bands, paint, or other body markings), and then releasing them back into the environment to allow them to mix with the rest of the population. Later, researchers collect a new sample, including some individuals that are marked (recaptures) and some individuals that are unmarked (Figure 45.4). Figure 45.4 Mark and recapture is used to measure the population size of mobile animals such as (a) bighorn sheep, (b) the California condor, and (c) salmon. (credit a: modification of work by Neal Herbert, NPS; credit b: modification of work by Pacific Southwest Region USFWS; credit c: modification of work by Ingrid Taylar) Using the ratio of marked and unmarked individuals, scientists determine how many individuals are in the sample. From this, calculations are used to estimate the total population size. This method assumes that the larger the population, the lower the percentage of tagged organisms that will be recaptured since they will have mixed with more untagged individuals. For example, if 80 deer are captured, tagged, and released into the forest, and later 100 deer are captured and 20 of them are already marked, we can estimate the population size (*N*) using the following equation: $$\frac{\text{(number marked first catch x total number of second catch)}}{\text{number marked second catch}} = N$$ Using our example, the population size would be estimated at 400. $$\frac{(80 \times 100)}{20} = 400$$ Therefore, there are an estimated 400 total individuals in the original population. There are some limitations to the mark and recapture method. Some animals from the first catch may learn to avoid capture in the second round, thus inflating population estimates. Alternatively, some animals may prefer to be retrapped (especially if a food reward is offered), resulting in an underestimate of population size. Also, some species may be harmed by the marking technique, reducing their survival. A variety of other techniques have been developed, including the electronic tracking of animals tagged with radio transmitters and the use of data from commercial fishing and trapping operations to estimate the size and health of populations and communities. # **Species Distribution** In addition to measuring simple density, further information about a population can be obtained by looking at the distribution of the individuals. **Species dispersion patterns** (or distribution patterns) show the spatial relationship between members of a population within a habitat at a particular point in time. In other words, they show whether members of the species live close together or far apart, and what patterns are evident when they are spaced apart. Individuals in a population can be equally spaced apart, dispersed randomly with no predictable pattern, or clustered in groups. These are known as uniform, random, and clumped dispersion patterns, respectively (Figure 45.5). Uniform dispersion is observed in plants that secrete substances inhibiting the growth of nearby individuals (such as the release of toxic chemicals by the sage plant *Salvia leucophylla*, a phenomenon called allelopathy) and in animals like the penguin that maintain a defined territory. An example of random dispersion occurs with dandelion and other plants that have wind-dispersed seeds that germinate wherever they happen to fall in a favorable environment. A clumped dispersion may be seen in plants that drop their seeds straight to the ground, such as oak trees, or in animals that live in groups (schools of fish or herds of elephants). Clumped dispersions may also be a function of habitat heterogeneity. Thus, the dispersion of the individuals within a population provides more information about how they interact with each other than does a simple density measurement. Just as lower density species might have more difficulty finding a mate, solitary species with a random distribution might have a similar difficulty when compared to social species clumped together in groups. Figure 45.5 Species may have uniform, random, or clumped distribution. Territorial birds such as penguins tend to have uniform distribution. Plants such as dandelions with wind-dispersed seeds tend to be randomly distributed. Animals such as elephants that travel in groups exhibit clumped distribution. (credit a: modification of work by Ben Tubby; credit b: modification of work by Rosendahl; credit c: modification of work by Rebecca Wood) # **Demography** While population size and density describe a population at one particular point in time, scientists must use demography to study the dynamics of a population. Demography is the statistical study of population changes over time: birth rates, death rates, and life expectancies. Each of these measures, especially birth rates, may be affected by the population characteristics described above. For example, a large population size results in a higher birth rate because more potentially reproductive individuals are present. In contrast, a large population size can also result in a higher death rate because of competition, disease, and the accumulation of waste. Similarly, a higher population density or a clumped dispersion pattern results in more potential reproductive encounters between individuals, which can increase birth rate. Lastly, a female-biased sex ratio (the ratio of males to females) or **age structure** (the proportion of population members at specific age ranges) composed of many individuals of reproductive age can increase birth rates. In addition, the demographic characteristics of a population can influence how the population grows or declines over time. If birth and death rates are equal, the population remains stable. However, the population size will increase if birth rates exceed death rates; the population will decrease if birth rates are less than death rates. Life expectancy is another important factor; the length of time individuals remain in the population impacts local resources, reproduction, and the overall health of the population. These demographic characteristics are often displayed in the form of a life table. ### **Life Tables** Life tables provide important information about the life history of an organism. Life tables divide the population into age groups and often sexes, and show how long a member of that group is likely to live. They are modeled after actuarial tables used by the insurance industry for estimating human life expectancy. Life tables may include the probability of individuals dying before their next birthday (i.e., their **mortality rate**), the percentage of surviving individuals dying at a particular age interval, and their life expectancy at each interval. An example of a life table is shown in <u>Table 45.1</u> from a study of Dall mountain sheep, a species native to northwestern North America. Notice that the population is divided into age intervals (column A). The mortality rate (per 1000), shown in column D, is based on the number of individuals dying during the age interval (column B) divided by the number of individuals surviving at the beginning of the interval (Column C), multiplied by 1000. mortality rate = $$\frac{\text{number of individuals dying}}{\text{number of individuals surviving}} \times 1000$$ For example, between ages three and four, 12 individuals die out of the 776 that were remaining from the original 1000 sheep. This number is then multiplied by 1000 to get the mortality rate per thousand. mortality rate = $$\frac{12}{776}$$ x 1000 \approx 15.5 As can be seen from the mortality rate data (column D), a high death rate occurred when the sheep were between 6 and 12 months old, and then increased even more from 8 to 12 years old, after which there were few survivors. The data indicate that if a sheep in this population were to survive to age one, it could be expected to live another 7.7 years on average, as shown by the life expectancy numbers in column E. | Life ' | Table | of Dal | l Mountai | in Sheep <u>¹</u> | |--------|-------|--------|-----------|-------------------| |--------|-------|--------|-----------|-------------------| | Age
interval
(years) | Number dying
in age interval
out of 1000
born | Number surviving at
beginning of age
interval out of 1000
born | Mortality rate per
1000 alive at
beginning of age
interval | Life expectancy or mean
lifetime remaining to those
attaining age interval | |----------------------------|--|---|---|--| | 0-0.5 | 54 | 1000 | 54.0 | 7.06 | | 0.5-1 | 145 | 946 | 153.3 | | | 1-2 | 12 | 801 | 15.0 | 7.7 | | 2-3 | 13 | 789 | 16.5 | 6.8 | Table 45.1 This life table of Ovis dalli shows the number of deaths, number of survivors, mortality rate, and life expectancy at | Age
interval
(years) | Number dying
in age interval
out of 1000
born | Number surviving at
beginning of age
interval out of 1000
born | Mortality rate per
1000 alive at
beginning of age
interval | Life expectancy or mean
lifetime remaining to those
attaining age interval | |----------------------------|--|---|---|--| | 3-4 | 12 | 776 | 15.5 | 5.9 | | 4-5 | 30 | 764 | 39.3 | 5.0 | | 5-6 | 46 | 734 | 62.7 | 4.2 | | 6-7 | 48 | 688 | 69.8 | 3.4 | | 7-8 | 69 | 640 | 107.8 | 2.6 | | 8-9 | 132 | 571 | 231.2 | 1.9 | | 9-10 | 187 | 439 | 426.0 | 1.3 | | 10-11 | 156 | 252 | 619.0 | 0.9 | | 11-12 | 90 | 96 | 937.5 | 0.6 | | 12-13 | 3 | 6 | 500.0 | 1.2 | | 13-14 | 3 | 3 | 1000 | 0.7 | **Table 45.1** This life table of *Ovis dalli* shows the number of deaths, number of survivors, mortality rate, and life expectancy at each age interval for the Dall mountain sheep. ## **Survivorship Curves** Another tool used by population ecologists is a **survivorship curve**, which is a graph of the number of individuals surviving at each age interval plotted versus time (usually with data compiled from a life table). These curves allow us to compare the life histories of different populations (Figure 45.6). Humans and most primates exhibit a Type I survivorship curve because a high percentage of offspring survive their early and middle years—death occurs predominantly in older individuals. These types of species usually have small numbers of offspring at one time, and they give a high amount of parental care to them to ensure their survival. Birds are an example of an intermediate or Type II survivorship curve because birds die more or less equally at each age interval. These organisms also may have relatively few offspring and provide significant parental care. Trees, marine invertebrates, and most fishes exhibit a Type III survivorship curve because very few of these organisms survive their younger years; however, those that make it to an old age are more likely to survive for a relatively long period of time. Organisms in this category usually have a very large number of offspring, but once they are born, little parental care is provided. Thus these offspring are "on their own" and vulnerable to predation, but their sheer numbers assure the survival of enough individuals to perpetuate the species. Figure 45.6 Survivorship curves show the distribution of individuals in a population according to age. Humans and most mammals have a Type I survivorship curve because death primarily occurs in the older years. Birds have a Type II survivorship curve, as death at any age is equally probable. Trees have a Type III survivorship curve because very few survive the younger years, but after a certain age, individuals are much more likely to survive. # 45.2 Life Histories and Natural Selection By the end of this section, you will be able to do the following: - Describe how life history patterns are influenced by natural selection - Explain different life history patterns and how different reproductive strategies affect species' survival A species' **life history** describes the series of events over its lifetime, such as how resources are allocated for growth, maintenance, and reproduction. Life history traits affect the life table of an organism. A species' life history is genetically determined and shaped by the environment and natural selection. # **Life History Patterns and Energy Budgets** Energy is required by all living organisms for their growth, maintenance, and reproduction; at the same time, energy is often a major limiting factor in determining an organism's survival. Plants, for example, acquire energy from the sun via photosynthesis, but must expend this energy to grow, maintain health, and produce energy-rich seeds to produce the next generation. Animals have the additional burden of using some of their energy reserves to acquire food. Furthermore, some animals must expend energy caring for their offspring. Thus, all species have an **energy budget**: they must balance energy intake with their use of energy for metabolism, reproduction, parental care, and energy storage (such as bears building up body fat for winter hibernation). ### **Parental Care and Fecundity** **Fecundity** is the potential reproductive capacity of an individual within a population. In other words, fecundity describes how many offspring could ideally be produced if an individual has as many offspring as possible, repeating the reproductive cycle as soon as possible after the birth of the offspring. In animals, fecundity is inversely related to the amount of parental care given to an individual offspring. Species, such as many marine invertebrates, that produce many offspring usually provide little if any care for the offspring (they would not have the energy or the ability to do so anyway). Most of their energy budget is used to produce many tiny offspring. Animals with this strategy are often self-sufficient at a very early age. This is because of the energy tradeoff these organisms have made to maximize their evolutionary fitness. Because their energy is used for producing offspring instead of parental care, it makes sense that these offspring have some ability to be able to move within their environment and find food and perhaps shelter. Even with these abilities, their small size makes them extremely vulnerable to predation, so the production of many offspring allows enough of them to survive to maintain the species. Animal species that have few offspring during a reproductive event usually give extensive parental care, devoting much of their energy budget to these activities, sometimes at the expense of their own health. This is the case with many mammals, such as humans, kangaroos, and pandas. The offspring of these species are relatively helpless at birth and need to develop before they